Graphene composites which include fibre, polymer matrix and graphene layers all work together to distribute mechanical stress, resulting in a material with improved strength and other beneficial properties. This makes them ideal for use in the transport industry.

“Graphene-integrated composites are an example of lighter materials with great potential for use in vehicle frameworks. They are constructed by introducing graphene sheets, a few billionths of a metre thick, into hierarchical fibre composites as a nano-additives.
 
Hierarchical fibre composites are a type of composite material in which components of different sizes are combined in a controlled way to significantly improve mechanical properties. They typically consist of micro- or mesoscopic carbon fibres, a few millionths of a metre thick, attached to a polymer matrix, and they are already used as building materials to make vehicles of all shapes and sizes.
 
Graphene’s high aspect ratio, high flexibility and mechanical strength enable it to enhance the strength of weak points in these composites, such as at the interface between two different components. Its tunable surface chemistry also means that interactions with the carbon fibre and polymer matrix can be adjusted as needed. The fibre, polymer matrix and graphene layers all work together to distribute mechanical stress, resulting in a material with improved strength and other beneficial properties.
 
The Graphene Flagship brought together top European researchers and companies to discuss the most disruptive ways graphene could enhance composites used in the aerospace, automotive and energy industries. The multidisciplinary team involved researchers from academic institutions, business enterprises such as Graphene Flagship Partners Nanesa and Avanzare, and large transportation end-user industries, such as Graphene Flagship Partners Airbus and Fiat.
 
They showed that integrating graphene and related materials (GRMs) into fibre-reinforced composites (FRCs) has great potential to improve weight and strength, and helps to overcome the bottlenecks limiting the applications of these composites in planes, cars, wind turbines and more. Nowadays, the transportation industry is responsible for nearly one-third of global energy demand, and it is the major source of pollution and greenhouse gas emissions in urban areas.
 
Graphene Flagship scientists are therefore continually trying to develop new materials to lower fuel usage and CO2 emissions, helping to mitigate environmental damage and climate change.

 
Read full article Graphene takes off in composites for planes and cars

Source: Phys.Org by Graphene Flagship Image by Fuzz from Pixabay

Read more graphene news over here.

Spread the graphene